
M -A19l 094 PROCEEDINGS FROM THE WORKSHOP ON LARGE-GRAINED 1/2
PARALLELISM C2ND) HELD IN (U) CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST

UNCLASSIFIED J WING ET At NOV 87 CHU/SEI-87-SR-5 F/G 12/7 Nt.

I EhEilli/huiihE

I .hmmommhmmhmInnollliniiinlnmo

I.I
.4.44I1I

7"..

* 111 .
0,t • • •5 "P. IIBI • •

Special Report
0') CMU/SEI-87-SR-5

0 1FILE COPY

Proceedings from the Second
Workshop on Large-Grained
Parallelism

Jeanette Wing
Maurice Herlihy

Mario R. Barbacci rTIC
.. November 1987

.ECT.

] Approved for public Teleasel
Dis. ,tribution Unlimited I ,-.

*<
=:@ @• $ "

[@ .@.1
, '

Special Report
CMU/SEI-87-SR.5

November 1987

Proceedings from the Second
Workshop on Large-Grained

Parallelism

Jeanette Wing
Maurice Herlihy

Mario R. Barbacci

' 7i C~.& LI

:"2 2%r.. i....................................... Q 'A .rv,

- ~- I . ? .IN S p ,. -'.

S ' I .:'

,. Approved for public release.

Distribution unlimited.

Software Engineering l. stitute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

=.L

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler
SEI Joint Program Office

i

W This work was sponsored by the U.S. Department of Defense.

II

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U S
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Atn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on
ordenng. please contact NTIS directly: National Technical Information Services, U.S Department of Commerce,
Springfield, VA 22161

r%

___ -'--- Carnegie Mellon University

- Software Engineering Institute

These are the proceedings of the Second Workshop on Large-Grained Parallelism held October 11-14,
1987, in Hidden Valley, Pennsylvania. The workshop was organized by the Software Engineering Institute
and the Department of Computer Science, Carnegie Mellon University, with the cooperation of the IEEE
Computer Society.

The purpose of the workshop was to bring together people whose interests lie in the areas of operating I
systems, programming languages, and formal models for parallel and distributed computing. The
emphasis of the workshop was on large-grained parallelism or parallelism between concurrent programs
running on networks of possibly heterogeneous computers rather than parallelism within a single process
or thread of control. Aspects of large-grained parallelism that were common to most participants' interests
were fault-tolerance, heterogeneity, and real-time applications.,I

Ninety abstracts were submitted for review by the program committee and the authors of thirtyeight of
these abstracts were sent acceptance letters and invitations to attend the workshop. To provide more
time for discussion and audience participation, only sixteen authors were asked to give twenty-five minute
talks based on their abstracts. The rest of the abstracts were summarized by discussion leaders. The
workshop was divided into five sessions of talks and two parallel sessions of discussion. The five general
areas covered by the talks were: scheduling, distributed languages, real-time languages and models,
operating system support, and applications. There were parallel discussions on scheduling and
distributed languages, and on real-time and operating system support.

There was a reasonable balance among the participants with regard to efficiency concerns on the one
hand, e.g., by the software and hardware systems and application builders, and correctness concerns on
the other, e.g., by the real-time modelers and language designers. We identified a number of key
challenges:

* Distributed systems, languages, environments

- Make transactions efficient. Integrate them into the operating system.

- Implement applications that demonstrate how to use transactions at both the
programming language and operating system levels.

- Identify applications other than databases to motivate the need for multi-site
transaction-based systems.

* Real-time systems, models, scheduling

- Devise and test analytical models for distributed scheduling of tasks that range in
degrees of computational complexity.

- Show the correspondence between physical time and iogical time using a formal
modeling approach.

- Identify a set of programming and specification language primitives that capture and
abstract from real-time events of interest.

In the year that elapsed since the first workshop on large-grained parallelism that took place in
Providence, Rhode Island, a number of the issues related to large-grained parallelism became more
focused, as evidenced by the topics and the quality of the abstracts submitted. Considering the wide
range of interests and background of the participants, the success of this workshop is a good omen for
future meetings.

Jeannette M. Wing Maurice P. Herlihy Mario R. Barbacci
Program Chair General Chair Arrangements Chair

/" Department of Department of Software Engineer'ng
Computer Science Computer Science Institute

i.-

-- Carnegie Mellon University

-_ Software Engineering Institute ,...__

Final Program

Time Sunday, October 11 Moderator

4:00 pm Registration desk opens
6:00 pm Dinner followed by informal discussions

Monday, October 12

7:30 am Breakfast
8:30 am Session 1 -- Scheduling Barbacci

Talks by Jack Stankovic and Jean-Luc Gaudiot
10:00 am Break
10:30 am Session 2 -- Distributed Languages and Environments Wing

Talks by David Notkin, William Weihl, and Maurice Herlihy
1200 am Lunch

.1:30 pm Parallel Discussions: Scheduling Stankovic
Parallel Discussions: Distributed Languages Weihl ,

3:00 pm Break
3:30 pm Session 3 -- Real-Time Languages and Models Herlihy

Talks by Janice Glasgow, Debra Lane, and Mario Barbacci 0

5:00 pm Break
6:00 pm Dinner followed by informal discussions

Tuesday, October 13

7:30 am Breakfast
8:30 am Session 4 -- Operating System Support Satya%.' .

Talks by Mark Sullivan and Rick Bubenick
10:00 am Break
10:30 am Parallel Discussions: Real-Time Languages and Models Bryan

Parallel Discussions: Operating System Support Satya
12:00 am Lunch
1:30 pm Free afternoon (unstructured meetings)
6:00 pm Dinner followed by informal discussions

Wednesday, October 14

7:30 am Breakfast
830 am Session 5 -- Applications Stankovic

Talks by Martin McKendry, Sid Ahuja, and Carl Diegert
S10 00 am Break

10:30 am Session 5 (Continuation) Wing
Talks by Liuba Shrira, Richard LeBlanc, and Hanno Wuppert

12 00 am Lunch

%,%%%

d 0 0

.' .,

_______ Carnegie Mellon University

' ---' Software Engineering Institute

Attendee List

S. R. Ahuja
Systems Architectures Research Department
AT&T Bell Laboratoies
Crawford Corner Rd.

U Holmdel, NJ 07733
" ucbvax!vaxl35!sra

Mario Barbacci
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
barbacci@sei.cmu.edu

Albert Benveniste
IRISA

4 Campus de Beaulieu
35042 Rennes Cedex
France

. RANDRE@irisa.irisa.fr

Doug Bryan
ERL 456, Computer Systems Labora:ory
Stanford University
Stanford, CA 94305

, bryan@sierra.stanford.edu

Rick Bubenik
Department of Computer Science
Rice University
P.O. Box 1892
Houston, TX 77251
rick@rtce.edu

Eric C. Cooper
Department of Computer Science
Carnegie Mellon University
Pittsburgh. PA 15213
ecc@cs.cmu edu

Luis Cova
Department of Computer Science
Princeton University

d Princeton, NJ 08544
% allegraIprincetonIcova

cova@pri nceton.pu.edu

% 6' - i-*

. .-- "- Carnegie Mellon University

L- Software Engineering Institute

Carl Diegert
Computer Science and Mathematics - Division 1412
Sandia National Laboratories
Albuquerque, NM 87185
diegert@sandia-2.arpa

Dave Detlefs
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
dld@f.gp.cs.cmu.edu

Alan Downing
SRI International
333 Ravenswood Avenue
Menlo Park. CA 94025
downing@spam.istc.sri.com

0 Alessandro Forn
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
af@speech2.cs.cmu.edu

Stuart A. Friedberg
Computer Science Department
University of Rochester
Rochester, NY 14627
stuart@cs.rochester.edu
{ames,cmcl2, rutgers} !rochester'stuart

Jean-Luc Gaudiot
EE-Systems DepartmentSAL-300

V' University of Southern California
Los Angeles, CA 90089-0781
gaudiot@usc-cse.usc.edu

Thomas B. Gendreau
Deparment of Computer Science
Vanderbilt University
Box 1679 Station B

. Nashville, TN 37235
gendreau@vanderbi lt. csnet

Janice Glasgow
Department of Computing & Information Science
Queen's University

*. Kingston, Ontano
%z Canada K7L 3N6

janice%qucs@wi scvm.wisc edu

-IV

- ,Carnegie Mellon University

Software Engineering Institute

Andrew Grimshaw
Department of Computer Science
Universtiy of Illinois
1304 West Springfield

-o Urbana, IL 61801
grimshaw@p.cs.uiuc.edu

Maurice Herlihy
Department of Computer Science

"* Carnegie Mellon University
Pittsburgh, PA 15213
herlihy@cs cmu.edu

Norman Hutchinson
Computer Science Department
University of Anzona
Tucson, AZ 85721
norm@arzona edu

" Michael B Jones
Department of Computer Science
Carnege Mellon University
Pittsburgh, PA 15213

V P michael jones@spice.cs.cmu.edu

r Debra S. Lane
Department of Information and Computer Science
University of California at Irvine
Irvine, CA 92717
diane@ cs.uci.edu

Richard LeBlanc
Georgia Tech
School of ICS
Atlanta, GA 30332-0280
rich@gatech.edu

Insup Lee
Department of Computer and Information Science

,*W University of Pennsylvania
Philadelphia, PA 19104
lee@cis.upenn.edu

*' Paul LeGuernic
IRISA
Campus de Beaulieu

:e": 35042 Rennes Cedex
France
leguernic@insa insa.fr

-v -

11 R no-

Carnegie Mellon University

Software Engineering Institute

Glenn H. MacEwen
Computing and Information Science Department

S,,Queen's University
Kingston, Ontario
Canada K7L 3N6

, macewenqucis@wiscvm.wisc.edu

.* Martin McKendry
FileNet Corporation
3530 Hyland Avenue
Costa Mesa, CA 92626
(hplabs/trwrb} !felix!martin

Michael Molloy
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
mkm@k.gp.cs.cmu.edu

K.T. Narayana
Department of Computer Science
Whitmore Laboratory

*i The Pennsylvania State University
University Park, PA 16802

Dave Nichols
Department of Computer Science
Carnegie Mellon Universty
Pittsburgh, PA 15213
nichols+@anldrew.cmu.edu

David Notkin
Department of Computer Science, FR-35
University of Washington

*Seattle, WA 98195
notkin@cs.washington.edu

Calton Pu
Department of Computer Science
Columbia University
New York, NY 10027
calton@cs columbia.edu

Mahadev Satyanarayanan
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
satya@andrew cmu.edu

- vi- :

-* ~ ~ ~ ~ Vl .. 1 .1 V4C

, _____ Carnegie Mellon University
_Software Engineering Institute

W Liuba Shrira
MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139
liuba@xx.lcs.mit.edu

Jack Stankovic
Department of Computer Science
University of Massachusetts
Amherst, MA 01003
stankovic@cs.umass.edu

Mark Sullivan
Computer Science Division, EECS Department
571 Evans Hall
University of California
Berkeley, CA 94618
sullivan@ucbarpa berkeley.edu

William E. Weihl
Laboratory for Computer Science
Massachusetts Institute of Technology
545 Technology Square
Cambridge, MA 02139
weihl@xxlcs.mit.edu

Chuck Weinstock
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
weinstock@sei.cmuedu

Tom Wilkes
Department of Computer Science
University of Lowell
1 University Avenue
Lowell, MA 01854
wilkes@ hawk. cs.ulowell.edu

Jeannette Wing
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
wing@k.gp.cs.cmu.edu

Hanno Wupper
Katholieke Universiteit Nijmegen, Informatica V
Toernooiveld
6525 ED Nijmegen
The Netherlands

1*1 -vii -

_. _,.i._i_ Carnegie Mellon University

SSoftware Engineering Institute

Table of Contents

Agrawal: Using a Network of Computer Workstations as a Loosely-Coupled Multiprocessor 1

Ahuja, Ensor, Horn: Parallelism in the Rapport Multimedia Conferencing System 2

Alonso, Cova, and Kyrimis: Process Scheduling in Loosely-Coupled Computer Networks 4

Barbacci. Weinstock, and Wing: Durra: Language Support for Large-Grained Paral!els/7 6

Bisiani and Forin: Agora: Heterogeneous and Multilanguage Parallel Programming 8

Bitz and Webb: Simulation and Performance Evaluation of Heterogeneous Parallel Robotic Systems 17

Bryan: Run-Time Monitoring of Tasking Betavior Using a Specification Language

Bubcnik and Zwaenepoel: Eager Evaluation in a Program Development Environment 17

Ccoper and Jones: An Object-Oriented Approach to Remote Procedure Call Stub Generatcr? 230

Diegert: Coupling a Network Computing Resource to a VLSI Placement Problem 23

Elmagarmid: Transaction Processing in Heterogeneous Distributed Databases 26

Friedberg: Hierarchical Process Composition z_

Gaudiot and Lee: Large Grain Data-Driven Approach to Multiprocessor Programming 31

Gendreau: Scheduling in Distributed Systems 34

Glasgow, MacEwen, and Skillicorn: Expressing Large Grained Parallelism Using Operator Nets 37

Grimshaw, Liu, and Thomas: Mentat: A Prototype Macro Data Flow System 40

Herlihy and Wing: Avalon: Language Support for Reliable Distributed Systems 42

Hutchinson: Emerald: A Language to Support Distributed Programming 45

Lane: Modei.ing Time Dependent Behavior In Parallel Software Systems 48

Leach: LGP2 Position Paper 51

Lee: A Programming System for Heterogeneous Distributed Environment 54

Le Guernic and Benveniste: The Synchronous Language SIGNAL 56

Long: Ootimistic Algorithms for Replicated Data Management 5S

McKendry: The FileNet System C

Molloy: Requirements for the Performance Evaluation of Paralel Systems 63

Narayana: Proving Real-Time Communicating Sequential Processes Correct 65

'% -. .v,,,...-.- ..-i~S~ -

- .Carnegie Mellon University

Software Engineering Institute

Notkin: Research in Parallelism at The University of Washington 69

Pu: Supertransactions 72

"-" Roberts and Ellis: Parmake and dp: Experience with a Distributed, Parallel Implementation of make 74

Satyanarayanan: Coda: A Resilient Distributed File System 77

Slhiira: Abstract 79

Stankovic, Towsley, and Rommel: Scheduling Parallel Programs on a Distributed System 81

Sullivan Marionette: Support for Highly Parallel Distributed Programs in Unix 84

Van Zandt: 'The PHARROS Project 85

Weihl: Research in Distributed Systems 8.

* Wilkes and LeBlanc: Programming Language Features for Resilience and Availabihty 9 G

- Wrabetz: A Coarse-Grained Distributed Multiprocessing System 93

Wupper and Vytopil: Static Typing of Temporal and Reliability Attributes in Distributed Systems 95

_-x •

I'

,°.

Sm
'.-Ix.

2 . , % . .f hA & A~. d ~ & .. h ?~I

USING A NETWORK OF COMPUTER WORKSTATIONS AS A
LOOSELY-COUPLED MULTIPROCESSOR

RAKES!!AGRA WAL

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(201) 582-2250
rakesh%allegraatt.com~ocsnet-relay

Inv

6 ABSTRACT

A major trend in computing in recent times has been the creation of large networks of computer
workstations. It has been speculated that the number of computing cycles installed in computer
workstations is an order of magnitude greater than the number installed in mainiframes. However, most
of these cycles are idle most of the time. There are many applications amenable to large grain parallel
processing that can profitably use these idle computing cycles by treating these networks as loosely-
coupled multiprocessors. There seem to be tw-o essential requirements for this approach to become
feasible:

*We must provide simple to use system facilities to access computing cycles from an idle
workst ation.

*We must develop tools for partitioning the problem into pieces that may be executed in parallel.

In NEST, we have extended System V Unix with a remote execution facility that allows creation of
transparent remote processes [1,3]. Developing applications that run in parallel on multiple machines i-s
particularly simple using this remote execution facility. If there is a program involving multiple
proces ses written in C that runs on a uniprocessor, it can be made to run on multiple machines by

simpl) changing the exec system call to rexec.
We also have developed a model for optimally partitioning a class of problems in the workstations
environment [2]. Our model recognizes that workstations are usually connected with a rather slow
communication medium, and explicitly takes into account the communication costs in addition to the
computation costs. The optimal partition can be determined for a given number of processors and, if
required, the optimal number of processors to use can also be derived- We also have performed
experiments that verify' and demonstrate the effectiveness of our model using matrix multiplication as an
example.

J" REFERENCES

1. R. Agrawal and A. K. Ezzat. Processor Sharing in NEST: A Network of Computer Workstations.
Proc. IEEE 1st Int'l Conf. Computer Workstations. San Jose, California, Nov. 1985. 198-208,

2. R. Agrawall and H. V. Jagadish. Parallel Computation on Loosely-Coupled Workstations.
Technical Memorandum, AT&T Bell Laboratories, Murray Hill. New Jersey, 1986.

3. R. Agrawal and A. K. Ezzat. Locanon Independent Remote Execution in NEST. IEEE Trans
Soft.~are Eng. 13, 8 (Aug. 1987), 905-912

I-1

"n NA A N % *A WORKSTATIONS A2 A

Parallelism in the Rapport Multimedia Conferencing System

S. R. Ahuja
J. R. Ensor
D. N. Horn

AT&T Bell Laboratories
Holmdel, New Jersey 07733

Rapport is a multimedia conferencing system which executes on a collection of network-
connected workstations. This system provides communication protocols and user interfaces
that effect a natural conferencing environment in which users conduct remote, interactive
conferences by talking with each other and producing and editing common displays on their
workstations. Rapport coordinates the transmission and use of shared information in several
media, including voice, graphics, images, and text. Thus Rapport is a distributed system with a
collection of simultaneously active agents accessing shared data and producing new data which
must be broadcast in real time. Underlying mechanisms for global name service, data storage,
and window management are used by Rapport to produce its conferencing aids.

Our current implementation of Rapport executes on a collection of Sun workstations which
are connected by an Ethernet. A specialized processor we have built to handle voice (and
eventually video) transmissions is attached to each Sun through its VIME bus. The NFS file
service provides common names and storage for programs and data used in conferences. The X
window system is used to provide a common means of producing displays on the various
workstations. Rapport provides each conferee with protocols for controlling a conference. Oui
system also allows user-level application programs to be associated with a conference. These
programs manipulate shared data and produce common displays on the screens of the conferees*
workstatiom

Coordinating the input and output of application programs is a principal responsibility of
Rapport. We are presently comparing the behavior of two approaches to the execution of
application programs. In the first approach, a single workstation executes an application
program and broadcasts its output commands to the other conferees' workstations. The major
advantage of this approach is that it allows the various conferees to see results of programs
without executing them. The corresponding disadvantage is that broadcasting all the window
level commands and arguments for display generation usually generates significant network
traffic. In the second approach, each workstation executes all application programs of a
conference under some constraints of synchronization and input control. This technique tends

to generate less network traffic since only the application program input commands are
transmitted among the conference workstations. The major drawback of this technique is that
each conferee must execute the same software in a consistent environment. Some programs are
written to utilize local state and are not suitable for this technique. For example, a bitblit
program might receive as an argument a pointer into its local machine's memory. Giving this
command and its argument to each conferee would not preserve the consistency of the
conference.

Though the basic tradeoffs between the two approaches are readily identified, the
importance of these tradeoffs are not obvious. The first Rapport implementation requires that
each workstation execute each application program locally. We are now building a version in
which each application program is executed by only one workstation The two versions of
Rapport give us the opportunity to examine some parallel execution issues. We can determine
the amount of network traffic generated by each approach, and hence determine whether the
differences in network load are significant in various situations. We can also investigate
whether synchronization amon- the application programs at program command input is notably

different from synchronization both at command input and program output. The single site

A- - .- N N.. --.. • . , •- .%.-... . .,. . . %.4 . .

r

execution of each application program allows different conferees to work on different displays
simultaneously. We are going to investigate the usefulness of this parallelism between the
synchronization points imposed by the conference management.

After performing these initial experiments with Rapport, we plan to create a modified
-* system in which conferences can take place over wide area networks. This extension poses

major difficulties. In the local area network environment we are using standard tools, NFS and
X, to reduce the apparent heterogeneity of the workstations. Further, conferencing inherently
involves the sharing and multicasting of information, which require a naming mechanism and
efficiency of transmission. NFS gives us a global name service and a convenient storage for
common programs and data. X allows us to conveniently coordinate the displays on the
conferees' workstations. In the wide area environment these tools are not available, so we will

be required to provide their services for ourselves. The implications for the real time
characteristics of the system are even more dramatic. The delays in producing displays on
remote workstations must be kept under control in spite of the larger transmission delays.
Furthermore, we must limit the skeAs among the transmission of the different media

03

'°%

. -, ., o-.I

PROCESS SCHEDULING IN LOOSELY-COUPLED
COMPUTER NETWORKS

Rafael Alonso
Luis Cova

Kriton Kyrimis

Department of Computer Science
Princeton University

Princeton, N.J. 08544
(609) 452-3869

ABSTRACT

A computational environment in widespread use is that of a loosely-coupled local
area network (typically an Ethernet) of high performance workstations (such as SUNt
workstations). It has been observed that such networks have the potential for becoming
inexpensive parallel engines, especially for users whose applications show a coarse paral-
lelism (i.e., large grained parallelism). Furthermore, it seems that such systems are usu-
ally underutilized, i.e., many of the machines on the network are not in use at any one
time. Our current research aims at helping users with applications displaying large
grained parallelism to schedule their tasks and make efficient use of these idle processors.

Our work has proceeded along a number of lines. The first involves the exploration
of load sharing policies. As a user starts up several parallel tasks, it is desirable for those
jobs to be scheduled automatically, and in such a manner that each of them can obtain as
many processing cycles as possible. A load sharing mechanism can ensure that idle
workstations across the network can be used by a parallel application in a user-
transparent manner. We have built such a mechanism [ALON86] and have used it to
experiment with a variety of load balancing strategies. This work has concerned itself
with load balancing (i.e., making sure that the available work is evenly spread throughout
the network). This may not be appropriate for an environment where users own their
individual machines; in that situation some users might be willing to share cycles, but not
at the expense of slowing down their private computations. We are now studying tech-
niques for scheduling in such networks [ALON87a].

We have recently started on a related topic, that of the placement of parallel tasks in
networks of multiprocessing workstations (i.e., workstations such as the DEC Firefly or
the Xerox Parc Dragon). In such environments, the scheduling decision is a two-level
one, especially if there are different costs to communicate on the same machine than
across the network. For some applications that require a large amount of inter-task com-
munication it might be best to cluster all the computational threads on the same machine,
even if excess processing cycles are available elsewhere, while in other instances the

t SUN is a tradc mark of SUN Microsystcms, INC.

* -4-

~..i'.-- ~'*~V '~%' * * w ~%

computational component is the main processing bottleneck.

VOur work in this area consists of a joint project with researchers at Bell Communi-
cations Research. For this project, DUNE [PUCC1987], a multiple processor system, is
being used. Dune supports transparent process migration, both within a multiprocessor
and across the network. We are currently exploring a variety of scheduling algorithms
that take advantage of the process migration capability of the system to allocate several
parallel threads automatically on behalf of a user.

Lastly, we have also studied the issues involved in process migration. For many
applications, it will be true that, during some phases of the computation, there will be a
large number of parallel tasks, which will then dwindle in number to very few. In this
situation, it is desirable to spread initially all the tasks across the available machines and,
when there are only a few left, migrate those tasks away from each other (if they happen
to be on the same processor) or towards the more powerful machines. We have designed
and implemented a process migration mechanism for a network of SUN workstations
[ALON87b]. We are presently building tools that utilize the process migration func-
tionality of our system. For example, we are building a mechanism that will periodically
scan the machines on the network and ensure that processes that have used many CPU

* cycles in a short time do not run in the same processor if at all possible.

References

[ALON86]
p' Rafael Alonso, Phillip Goldman, and Peter Potrebic, "A Load Balancing Imple-

mentation for a Local Area Network of Workstations," Proceedings of the IEEE
Workstation Technology and Systems Conference, 1986.

[ALON87a]
Rafael Alonso and Luis Cova, "Sharing Jobs Among Independently Owned Proces-
sors," Technical Report, Department of Computer Science, Princeton University,
1987.

[ALON87b]
Rafael Alonso and Kriton Kyrimis, "A Process Migration Implementation for a
UNIx" System," Technical Report CS-TR-092-87, Department of Computer Sci-
ence, Princeton University, 1987.

[PUCC87]
Marc Pucci and James Alberi, "The Architecture of the DUNE Multiple Processor
System: An experiment in Generalized Interprocessor Communication," Technical
Report, Bell Communication Research, 1987.

t UNIX is a trademark of Bell Laboratories

* *

Durra: Language Support for
Large-Grained Parallelism

Mario R. Barbacci,
Charles B. Weinstock, and

Jeannette M. Wing

IP Software Engineering Institute and
Department of Computer Science

Carnegie Mellon University,
Pittsburgh, PA 15213

We are interested in a class of real-time, embedded applications in which a number of
concurrent, large-grained tasks cooperate to process data obtained from physical
sensors, to make decisions based on these data, and to send commands to control
motors and other physical devices. Since the speed of, and the resources required by
each task may vary, these applications can best exploit a computing environment
consisting of multiple special- and general-purpose, loosely connected processors. We
call this environment a heterogeneous machine.

During execution time, processes, which are instances of tasks, run on possibly
separate processors and communicate with each other by sending messages. Since
the patterns of communication can vary over time, and, since the speed of the individual
processors can vary over a wide range, additional hardware resources in the form of
switching networks and data buffers are also required in the heterogeneous machine.
The application developer is responsible for prescribing a way to manage all of these
resources. We call this prescription a task-level application description. It describes the
tasks to be executed and the intermediate queues required to store the data as it moves
from producer to consumer processes. A task-level description language is a notation
for writing these application descriptions.

To support this large-grained parallelism, we have designed and implementated Durra
[1], a task-level description language. We are using the term "description language"
rather than "programming language" to emphasize that a task-level application
description is not translated into object code in some kind of executable "machine
language" but rather into commands for a run-time scheduler. We assume therefore
that each of the processors in a heterogeneous machine has languages, compilers,
libraries of (reusable) programs, and other software development tools that cater to the

Arpanet addresses: barbacci@sei.cmu.edu, weinstock@sei.cmu.edu, wlng@k.cs.cmu.edu

-6-

",=% % ° ".% " ". % "- ". . % %'1% " ". " "" °- % %-"." " % ".*%" " % % =" % %=,%" % % %, ",,%, .'t. " ' %,% % % ' , a

special properties of a processor's architecture. Durra's support environment is
responsible for coordinating the use and interaction of the separate software
environments of the individual processors.

There are three distinct phases in the software development process for a
.. heterogeneous machine: (1) the creation of a library of tasks, (2) the creation of an

application description, and finally (3) the execution of the application. During the first
phase, the developer breaks the application into specific tasks (e.g., sensor processing,
feature recognition, map database management, and route planning) and writes code
implementing the tasks. For each implementation of a task, the developer writes a

"- Durra task description and enters it into the library. Developing programs for some of
the more exotic processors involves selecting algorithms appropriate to a processor's
architecture, and then painstakingly testing and tuning the code to take advantage of
any special features of the processor. For example, an application might use a matrix
multiplication task written in assembly for a systolic array processor while
simultaneously accessing a database of three-dimensional images maintained by a
program written in C running on a workstation. Developing these programs is a slow
and difficult process and Durra facilitates their reuse in multiple applications.

I

During the second phase, the user writes a Durra application description.
Syntactically, an application description is identical to a compound or structured task
description and can be stored in the library and used later as a component task in a
larger application description. When the application description is compiled, the
compiler generates a set oi resource allocation and scheduling commands. During the
last phase, the scheduler executes a set of commands which are produced by the
compiler. These commands instruct the scheduler to download the task
implementations, (i.e., code corresponding to the component tasks) to the processors
and issue the appropriate commands to execute the code.

In our presentation, we will illustrate the main features of Durra through examples, the
existing implementation of tool support for Durra, followed by preliminary conclusions ,r

and directions for future work. Further details on the language can be found in the
Durra reference manual [1] and an overview paper [2].

[1] M.R. Barbacci and J.M. Wing: "Durra: A Task-level Description Language",

Technical Report CMU/SEI-86-TR-3, Software Engineering Institute, and Technical

Report CMU-CS-86-176, Department of Computer Science, Carnegie Mellon University,
December 1986.

[2] M.R. Barbacci and J.M. Wing: "Durra: A Task-level Description Language", in
Proceedings of the 16th International Conference on Parallel Processing, Pheasant Run
Resort, St. Charles, Illinois, August 1987.

-7-

~~~ .. r,. - r
w- %- % A %. :.A.L%.



Agora:
Heterogeneous and Multilanguage

Parallel Programming

Roberto Bisiani and Alessandro Forin

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Extended Abstract being used in the Word Matcher. Each of the corn-
The solution of many real-life problems encountered in ponents can be decomposed into parallel computations

science and industry requires the integration of parallel in many diffeient ways and both large and smai,
programs written in different languages and running on granularity decompositions are necessary.
heterogeneous machines. We call the development of
such systems heterogeneous parallel programming. For ex-
ample, sense- data acquisition and signal processing ..
might have to be integrated with planning, or electrical
circuit simulation might have to be integrated with ex-
pert system technology. The goal of the Agora project is
to facilitate heterogeneous parallel programming Word Words Sntenc*
Agora's support is both in terms of operating system lervl
mechanisms that can be used to implement
heterogeneous parallelism and in terms of programming
environment functionalities that facilitate the manage- Word Word Sentence
ment of parallel programs. This paper describes the El dmeri ofparalelprog ams Thi pa er d scrbes he Dispioy J S

former, see [31 for a description of the latter.
, We call the operating system level mechanisms Agora

Shared Memory, since they are based on a shared Pres -...... - Control transfer
memory model of parallelism. In order to simplify the
explanation of the Agora Shared Memory we will use Data transfer
an example abstracted from a speech recognition system
that has been successfully programmed in Agora [1].

The structure of the fragment of speech recognition Figure 1: Example of a Parallel, Heterogeneous
System: Speech Recognition.

system that is used as example is sketched in Figure 1.
This subsystem receives phonetic hypotheses and A satisfactory implementation requires a multiproces-
generates sentence hypotheses. Two components, Word sor that can execute programs with both C and Lisp
Matcher and Sentence Parser, are best implemented in C components. The Word Matcher requires a tightly
and the other two in Lisp. The aggregate computation coupled architecture while the Word Display can be run
power required by the four comronents to achieve real on a single processor that is loosely coupled with the
time execution is about 2 * 10r instructions for each rest of the system. The Word Matcher communicates
second of speech [21. with half of the computing power with the other components using a data-flow style of

'- socommunication; the Sentence Parser and Word Verifier"2 , This reqarc~h it sponsored by the Defense Advanced Raw-arch Proiem'

Agency, DoD, througJ ARPA Orde 5167, and monitored by the Space communicate as server and client.
and Naval Warfa'r Systems Command under contract N10003945- There are a number of tools that could provide support
C.0163 View, and conclusions contained in this document are those of for the implementation of the example, but none of
the aithomand should not be iteprted es re, presenng ofiat them has all the necessary characteristics. The tools useed
poben a ey e or i , o- the efeA d by the Al community (possibly with the exception of
Proweci Agency or of the hutsd States GovernmentbyteAcomny(psilwthhexetonf

ABE [71) are centered on a single computational model

* - -8-

-e'. , r e *. ,%W,*%? .. 0%.I. IfNVN 10 N. NI, I


